Adaptive mesh refinement for characteristic codes
نویسندگان
چکیده
منابع مشابه
Adaptive Mesh Refinement for Characteristic Codes
The use of adaptive mesh refinement (AMR) techniques is crucial for accurate and efficient simulation of higher dimensional spacetimes. In this work we develop an adaptive algorithm tailored to the integration of finite difference discretizations of wave-like equations using characteristic coordinates. We demonstrate the algorithm by constructing a code implementing the Einstein-Klein-Gordon sy...
متن کاملAdaptive Mesh Refinement for Characteristic Grids
I consider techniques for Berger-Oliger adaptive mesh refinement (AMR) when numerically solving partial differential equations with wave-like solutions, using characteristic (double-null) grids. Such AMR algorithms are naturally recursive, and the bestknown past Berger-Oliger characteristic AMR algorithm, that of Pretorius & Lehner (J. Comp. Phys. 198 (2004), 10), recurses on individual “diamon...
متن کاملAdaptive Mesh Refinement for Multiscale
plied and theoretical physics is to fully understand and predict the behavior of systems far from thermodynamic equilibrium,1–4 including those systems driven by an external force or experiencing a sudden change in environment (such as pressure or temperature). They also include systems transitioning from one metastable or long-lived state to another. The need to accurately model and numericall...
متن کاملAdaptive Mesh Refinement for Nonparametric Image Registration
3D image registration is a computationally extensive problem which is commonly solved in medical imaging. The complexity of the problem stems from its size and non-linearity. In this paper we present an approach that drastically reduces the problem size by using adaptive mesh refinement. Our approach requires special and careful discretization of the variational form on adaptive octree grids. I...
متن کاملAdaptive Mesh Refinement for Global Magnetohydrodynamic Simulation
The first part of this paper reviews some physics issues representing major computational challenges for global MHD models of the space environment. These issues include: (i) mathematical formulation and discretization of the governing equations that ensure the proper jump conditions and propagation speeds, (ii) regions of relativistic Alfvén speed, (iii) regions dominated by strong intrinsic p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2004
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2004.01.001